8 research outputs found

    Examination of the role of Mycoplasma bovis in bovine pneumonia and a mathematical model for its evaluation

    Get PDF
    The authors screened 34 large cattle herds for the presence of Mycoplasma bovis infection by examining slaughtered cattle for macroscopic lung lesions, by culturing M. bovis from lung lesions and at the same time by testing sera for the presence of antibodies against M. bovis. Among the 595 cattle examined, 33.9% had pneumonic lesions, mycoplasmas were isolated from 59.9% of pneumonic lung samples, and 10.9% of sera from those animals contained antibodies to M.bovis. In 25.2% of the cases M. bovis was isolated from lungs with no macroscopic lesions. The proportion of seropositive herds was 64.7%. The average seropositivity rate of individuals was 11.3% but in certain herds it exceeded 50%. A probability model was developed for examining the relationship among the occurrence of pneumonia, the isolation of M. bovis from the lungs and the presence of M. bovis specific antibodies in sera

    Assessment of phytostabilization potential of two Salix L. clones based on the effects of heavy metals on the root anatomical traits

    No full text

    Phytoremediation of contaminated soils and groundwater: lessons from the field

    No full text
    Background, aim, and scope: The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. Conclusions and perspectives: It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques)
    corecore